
capm

November 19, 2023

1 CAPM CAPITAL ASSET PRICING MODEL
Import necessary libraries

[1]: import pandas as pd
import matplotlib.pyplot as plt

Here we will be using the data’s of Apple and Amazon, so two tech companies.Then we have General
Electric, who was a company that’s had poor performance over this time period.Plus, we have the
VIX, which is a measure of volatility in the market.It actually uses a combination of put options
and call options to try to mimic the sentiment for volatility in the future market.

2 Load stock data
At first we load the csv files containing the stock prices of apple, amazon, general electric and the
CBOE Volatility Index since 1-1-2010

[2]: aapl = pd.read_csv("apple_2010.csv",index_col='Date',parse_dates=True)
amzn = pd.read_csv("amazon_2010.csv",index_col='Date',parse_dates=True)
ge = pd.read_csv("GE_2010.csv",index_col='Date',parse_dates=True)
vix = pd.read_csv("VIX_2010.csv",index_col='Date',parse_dates=True)
sp500 = pd.read_csv("sp500_2010.csv",index_col='Date',parse_dates=True)

Lets take a look at one of them.You’ll notice we have open, high, low, close, adjusted close and
volume.What we’re going to do is just check out the cumulative returns over time so we can get
a visual representation of how well we’re performing against the overall market.And technically,
we can do this two ways we can do absolute cumulative returns,so the actual dollar gain.But it’s
probably better to do it in percent gain.

[3]: aapl

[3]: Open High Low Close Adj Close \
Date
2009-12-31 7.611786 7.619643 7.520000 7.526071 6.462008
2010-01-04 7.622500 7.660714 7.585000 7.643214 6.562591
2010-01-05 7.664286 7.699643 7.616071 7.656429 6.573935
2010-01-06 7.656429 7.686786 7.526786 7.534643 6.469369
2010-01-07 7.562500 7.571429 7.466071 7.520714 6.457407

1

… … … … … …
2021-08-30 149.000000 153.490005 148.610001 153.119995 153.119995
2021-08-31 152.660004 152.800003 151.289993 151.830002 151.830002
2021-09-01 152.830002 154.979996 152.339996 152.509995 152.509995
2021-09-02 153.869995 154.720001 152.399994 153.649994 153.649994
2021-09-03 153.759995 154.630005 153.089996 154.300003 154.300003

Volume
Date
2009-12-31 352410800
2010-01-04 493729600
2010-01-05 601904800
2010-01-06 552160000
2010-01-07 477131200
… …
2021-08-30 90956700
2021-08-31 86453100
2021-09-01 80313700
2021-09-02 71115500
2021-09-03 57808700

[2940 rows x 6 columns]

3 Compute cumulative returns
The cumulative return is the overall total return of an investment over a given time period. You
can compute it by subtracting the current price of a stock from the price it had when you bought
it.To compute the percentage value, you divide it instead of subtracting

[6]: aapl["Adj Close"]

[6]: Date
2009-12-31 6.462008
2010-01-04 6.562591
2010-01-05 6.573935
2010-01-06 6.469369
2010-01-07 6.457407

…
2021-08-30 153.119995
2021-08-31 151.830002
2021-09-01 152.509995
2021-09-02 153.649994
2021-09-03 154.300003
Name: Adj Close, Length: 2940, dtype: float64

[29]: amzn["Adj Close"]

2

[29]: Date
2009-12-31 134.520004
2010-01-04 133.899994
2010-01-05 134.690002
2010-01-06 132.250000
2010-01-07 130.000000

…
2021-08-30 3421.570068
2021-08-31 3470.790039
2021-09-01 3479.000000
2021-09-02 3463.120117
2021-09-03 3478.050049
Name: Adj Close, Length: 2940, dtype: float64

[7]: ge["Adj Close"]

[7]: Date
2009-12-31 86.062485
2010-01-04 87.882713
2010-01-05 88.337753
2010-01-06 87.882713
2010-01-07 92.433258

…
2021-08-30 105.190002
2021-08-31 105.410004
2021-09-01 103.660004
2021-09-02 106.260002
2021-09-03 104.750000
Name: Adj Close, Length: 2940, dtype: float64

So let’s go ahead and create a function that can take in one of these data frames and then compute
the cumulative return.

[8]: def compute_cumulative(data, get_absolute=True):
initial_price = data["Adj Close"].iloc[0]
last_price = data["Adj Close"].iloc[-1]
if get_absolute:

Returns absolute dollar gain for 1 share
return last_price - initial_price

else:
Returns percentage change
return 100*(last_price-initial_price) / initial_price

[9]: compute_cumulative(aapl)

[9]: 147.8379945755005

To get the absolute value

3

[10]: compute_cumulative(aapl,get_absolute=False)

[10]: 2287.802548057404

So let’s just confirm that Apple really did perform that well

[12]: aapl["Adj Close"].plot()

[12]: <Axes: xlabel='Date'>

So, it looks like it started at a very low dollar amount, see below.

[13]: aapl

[13]: Open High Low Close Adj Close \
Date
2009-12-31 7.611786 7.619643 7.520000 7.526071 6.462008
2010-01-04 7.622500 7.660714 7.585000 7.643214 6.562591
2010-01-05 7.664286 7.699643 7.616071 7.656429 6.573935
2010-01-06 7.656429 7.686786 7.526786 7.534643 6.469369
2010-01-07 7.562500 7.571429 7.466071 7.520714 6.457407
… … … … … …
2021-08-30 149.000000 153.490005 148.610001 153.119995 153.119995

4

2021-08-31 152.660004 152.800003 151.289993 151.830002 151.830002
2021-09-01 152.830002 154.979996 152.339996 152.509995 152.509995
2021-09-02 153.869995 154.720001 152.399994 153.649994 153.649994
2021-09-03 153.759995 154.630005 153.089996 154.300003 154.300003

Volume
Date
2009-12-31 352410800
2010-01-04 493729600
2010-01-05 601904800
2010-01-06 552160000
2010-01-07 477131200
… …
2021-08-30 90956700
2021-08-31 86453100
2021-09-01 80313700
2021-09-02 71115500
2021-09-03 57808700

[2940 rows x 6 columns]

Lets see how it ended up

[14]: aapl.tail()

[14]: Open High Low Close Adj Close \
Date
2021-08-30 149.000000 153.490005 148.610001 153.119995 153.119995
2021-08-31 152.660004 152.800003 151.289993 151.830002 151.830002
2021-09-01 152.830002 154.979996 152.339996 152.509995 152.509995
2021-09-02 153.869995 154.720001 152.399994 153.649994 153.649994
2021-09-03 153.759995 154.630005 153.089996 154.300003 154.300003

Volume
Date
2021-08-30 90956700
2021-08-31 86453100
2021-09-01 80313700
2021-09-02 71115500
2021-09-03 57808700

Started with 6,46USD ended with 154,30USD Pretty cool.So clearly, there’s a huge jump here, and
2287% increase calculated above is actually in line with what we see here in the adjusted close
price.

Let’s go ahead and now calculate the cumulative return in percent terms for all the actual stocks.

5

[15]: def create_cumulative_abs(df):
df['Cumulative Absolute'] = df["Adj Close"] - df['Adj Close'].iloc[0]

return df

[16]: aapl = create_cumulative_abs(aapl)

[17]: aapl

[17]: Open High Low Close Adj Close \
Date
2009-12-31 7.611786 7.619643 7.520000 7.526071 6.462008
2010-01-04 7.622500 7.660714 7.585000 7.643214 6.562591
2010-01-05 7.664286 7.699643 7.616071 7.656429 6.573935
2010-01-06 7.656429 7.686786 7.526786 7.534643 6.469369
2010-01-07 7.562500 7.571429 7.466071 7.520714 6.457407
… … … … … …
2021-08-30 149.000000 153.490005 148.610001 153.119995 153.119995
2021-08-31 152.660004 152.800003 151.289993 151.830002 151.830002
2021-09-01 152.830002 154.979996 152.339996 152.509995 152.509995
2021-09-02 153.869995 154.720001 152.399994 153.649994 153.649994
2021-09-03 153.759995 154.630005 153.089996 154.300003 154.300003

Volume Cumulative Absolute
Date
2009-12-31 352410800 0.000000
2010-01-04 493729600 0.100582
2010-01-05 601904800 0.111927
2010-01-06 552160000 0.007360
2010-01-07 477131200 -0.004601
… … …
2021-08-30 90956700 146.657987
2021-08-31 86453100 145.367993
2021-09-01 80313700 146.047986
2021-09-02 71115500 147.187985
2021-09-03 57808700 147.837995

[2940 rows x 7 columns]

Second day you already gained 10 cents, followind day 11 cents, etc. Clearly, they are going to be
some days where your gain maybe negative.So the column on the right show you your cumulative
gain in absolute terms.Remember, this is all in dollar terms.

So let’s go ahead and do this for all the data frame.

[19]: amzn = create_cumulative_abs(amzn)
ge = create_cumulative_abs(ge)
sp500 = create_cumulative_abs(sp500)

6

Now I have Amazon, General Electric and SPF 500 absolute dollar gains.So let’s just for fun,lets
compare these.

[20]: plt.figure(figsize=(10,3),dpi=200)
aapl['Cumulative Absolute'].plot(label='AAPL')
amzn['Cumulative Absolute'].plot(label='AMZN')
ge['Cumulative Absolute'].plot(label='GE')
sp500['Cumulative Absolute'].plot(label='SP500')
plt.legend()

[20]: <matplotlib.legend.Legend at 0x1529d36ecd0>

4 COMMENT
Looks great but we see the absolute dollar gains, and keep in mind, it’s not fair to do this comparison
from one stock to another because we should really be considering the initial capital spent. However,
it is interesting to see the pure dollar gains for some stocks being so much greater than other ones.
You’ll notice here that Amazon gained a lot impure dollar terms versus Apple, GE and S&P 500.So
even with their amazing percent gains, if we just look at pure dollar terms, Amazon makes these
others almost look flat.However, we can always just take out Amazon, run it and then we get to
see the performance again in pure dollar terms to avoid the unfair competetion.:)Now, as we’ve
mentioned, you probably shouldn’t be using pure dollar terms for this sort of comparison.We are
able to see here how many dollars earned per share if we held since the start of the time series, but
it’s probably way better to use a cumulative percent gain.Let’s go ahead and create a function that
does that for us.But first, lets take out Amazon and see how our graph looks like.

[21]: plt.figure(figsize=(10,3),dpi=200)
aapl['Cumulative Absolute'].plot(label='AAPL')
ge['Cumulative Absolute'].plot(label='GE')
sp500['Cumulative Absolute'].plot(label='SP500')
plt.legend()

[21]: <matplotlib.legend.Legend at 0x1529de47990>

7

Now we can create the function mentioned above.It’s going to be much better to actually compare
and plot everything based off the percent change.

[23]: def calc_cum_perc(df):
df['Percent Change'] = 100*(df['Adj Close'] - df['Adj Close'].iloc[0]) /␣

↪df['Adj Close'].iloc[0] #initial adjusted close price

return df

[24]: aapl = calc_cum_perc(aapl)

[26]: aapl

[26]: Open High Low Close Adj Close \
Date
2009-12-31 7.611786 7.619643 7.520000 7.526071 6.462008
2010-01-04 7.622500 7.660714 7.585000 7.643214 6.562591
2010-01-05 7.664286 7.699643 7.616071 7.656429 6.573935
2010-01-06 7.656429 7.686786 7.526786 7.534643 6.469369
2010-01-07 7.562500 7.571429 7.466071 7.520714 6.457407
… … … … … …
2021-08-30 149.000000 153.490005 148.610001 153.119995 153.119995
2021-08-31 152.660004 152.800003 151.289993 151.830002 151.830002
2021-09-01 152.830002 154.979996 152.339996 152.509995 152.509995
2021-09-02 153.869995 154.720001 152.399994 153.649994 153.649994
2021-09-03 153.759995 154.630005 153.089996 154.300003 154.300003

Volume Cumulative Absolute Percent Change
Date
2009-12-31 352410800 0.000000 0.000000
2010-01-04 493729600 0.100582 1.556515
2010-01-05 601904800 0.111927 1.732071
2010-01-06 552160000 0.007360 0.113904
2010-01-07 477131200 -0.004601 -0.071201

8

… … … …
2021-08-30 90956700 146.657987 2269.541849
2021-08-31 86453100 145.367993 2249.579119
2021-09-01 80313700 146.047986 2260.102050
2021-09-02 71115500 147.187985 2277.743614
2021-09-03 57808700 147.837995 2287.802548

[2940 rows x 8 columns]

Lets do the same for other stocks and plot them.

[27]: amzn = calc_cum_perc(amzn)
ge = calc_cum_perc(ge)
sp500 = calc_cum_perc(sp500)

[28]: plt.figure(figsize=(10,3),dpi=200)
aapl['Percent Change'].plot(label='AAPL')
amzn['Percent Change'].plot(label='AMZN')
ge['Percent Change'].plot(label='GE')
sp500['Percent Change'].plot(label='SP500')
plt.legend()

[28]: <matplotlib.legend.Legend at 0x1529e05ce10>

5 COMMENT
This is a much fairer comparison because everything’s normalized in terms of percent.this is taking
into account that initial capital spent because the Apple share that it costs the same as an Amazon
share at the start of 2010, right?So what does this actually tell us?Well, it tells us that you probably
should have invested in Apple and Amazon, and depending on how much capital you had available
to locate, you would have actually performed pretty similar results,whether you had invested in
Apple or Amazon.Check out the above graph,(output20).It looked like Amazon as way better
performing than Apple.But, recall, in reality, they had very different starting prices.If I take a

9

look at Amazon, know how it starts at a price of 134USD and ends at 3470USD versus Apple
started a lot cheaper.So obviously, when Apple is such a lower starting price, it’s not going to be as
reflective of absolute dollar gains.But when we think about it in terms of percent now we can fairly
compare.In reality, you would have performed very well in either of them, actually almost the same
at the very end of the time period.But notice that your market, the S&P 500, while it performed
quite well, it’s not nearly this percent gain of these technology stocks of Apple and Amazon.And
notice that General Electric actually performed very poorly.In fact, let’s remove Apple and Amazon
from this plot just to fully understand what’s happening.

[30]: amzn

[30]: Open High Low Close Adj Close \
Date
2009-12-31 137.089996 137.279999 134.520004 134.520004 134.520004
2010-01-04 136.250000 136.610001 133.139999 133.899994 133.899994
2010-01-05 133.429993 135.479996 131.809998 134.690002 134.690002
2010-01-06 134.600006 134.729996 131.649994 132.250000 132.250000
2010-01-07 132.009995 132.320007 128.800003 130.000000 130.000000
… … … … … …
2021-08-30 3357.429932 3445.000000 3355.219971 3421.570068 3421.570068
2021-08-31 3424.800049 3472.580078 3395.590088 3470.790039 3470.790039
2021-09-01 3496.399902 3527.000000 3475.239990 3479.000000 3479.000000
2021-09-02 3494.760010 3511.959961 3455.000000 3463.120117 3463.120117
2021-09-03 3452.000000 3482.669922 3436.439941 3478.050049 3478.050049

Volume Cumulative Absolute Percent Change
Date
2009-12-31 4523000 0.000000 0.000000
2010-01-04 7599900 -0.620010 -0.460906
2010-01-05 8851900 0.169998 0.126374
2010-01-06 7178800 -2.270004 -1.687485
2010-01-07 11030200 -4.520004 -3.360098
… … … …
2021-08-30 3192200 3287.050064 2443.539964
2021-08-31 4356400 3336.270035 2480.129296
2021-09-01 3629900 3344.479996 2486.232448
2021-09-02 2923700 3328.600113 2474.427600
2021-09-03 2575700 3343.530045 2485.526270

[2940 rows x 8 columns]

[31]: plt.figure(figsize=(10,3),dpi=200)
ge['Percent Change'].plot(label='GE')
sp500['Percent Change'].plot(label='SP500')
plt.legend()

[31]: <matplotlib.legend.Legend at 0x1529e27c310>

10

6 COMMENT
I can see that S&P 500, looks like performed much better than General Electric.

So what does this actually have to do with the capital asset pricing model?The capital asset pricing
model takes into account the relationship between the returns and the actual market So if we treat
the S&P 500 as our overall market, we’re going to be interested in how the daily returns are related
to thr market.

So, for example, let’s go ahead and take a closer look at the S&P 500 again versus GE.You’ll notice
that there is some sort of relationship here.As GE goes up, it looks like the S&P 500 also went up
and when the S&P 500 did crash so that GE, and we actually see this behavior even in Apple.

So let’s compare Apple and the S&P 500.

[32]: plt.figure(figsize=(10,3),dpi=200)
aapl['Percent Change'].plot(label='AAPL')
sp500['Percent Change'].plot(label='SP500')
plt.legend()

[32]: <matplotlib.legend.Legend at 0x1529e031310>

11

So while it looks like they’re really unrelated, you do see some behavior when Apple crashes.Notice
there’s a dip right after 2020 for both stocks.Lets compare the daily returns ofS&P 500 versus
Apple through scatter plots so that I can get an idea if Apple is going up, is the market also going
up?

[33]: aapl['Daily Returns'] = aapl['Adj Close'].pct_change()
sp500['Daily Returns'] = sp500['Adj Close'].pct_change()
plt.scatter(aapl['Daily Returns'],sp500['Daily Returns'],alpha=0.5)

[33]: <matplotlib.collections.PathCollection at 0x152a0423c10>

7 COMMENT
If there was a perfect one to one correlation between daily returns of Apple and S&P 500, we would
have a straight line.Our X and Y axes would have points equal to each other. So the more you are
linearly aligned, the greater your beta is going to be.

8 CAPM,BETA,ALPHA AND LINEAR REGRESSION
Lets try to understand notion of CAPM and Beta.The actual use case of capital asset pricing model
when it first came out was to try to define some sort of expected return of your investment.But
in fact,this is a pretty outdated methodology in order to figure out some sort of expected return

12

because it relies so heavily on many assumptions. However, the actual concept of a beta and alpha
are extremely useful to try to understand the overall performance of any particular security or even
a portfolio or algorithm.So, let’s go ahead and check out how we can derive beta and alpha terms.

Now recall we were able to calculate some daily returns, as well as check out a visual relationship
between those returns Now, let’s solidify this further by actually performing a linear regression.And
what this simple linear regression is going to do is it’s going to return a slope intercept R value
and P value. And for our use case, we really just care about the slope and the intercept where the
slope is going to be our beta term and the intercept is going to be our alpha term.

So let’s make sure that we calculate the daily returns for all the securities that are remaining, and
then we also need to make sure that we drop any missing values.Otherwise, they will mess up our
linear regression calculation.Recall we’ve already done this daily returns calculation for Apple and
SP500

[34]: amzn['Daily Returns'] = amzn['Adj Close'].pct_change(1)
ge['Daily Returns'] =ge['Adj Close'].pct_change(1)
vix['Daily Returns'] = vix['Adj Close'].pct_change(1)

[35]: aapl = aapl.dropna()
ge = ge.dropna()
vix = vix.dropna()
sp500 = sp500.dropna()
amzn = amzn.dropna()

It’s time to actually calculate the linear regression between the S&P 500 daily returns and any
particular stocks daily returns.

[36]: from scipy.stats import linregress

[37]: def beta_and_alpha(df):
beta,alpha,_,_,_ = linregress(sp500['Daily Returns'],df['Daily Returns'])

return beta,alpha

[38]: beta_and_alpha(aapl)

[38]: (1.0917032604626986, 0.00056985495810669)

9 COMMENT
Notice Apple has a very high beta, so almost moves really closely in line with actual S&P 500the
market.The thing to note here is that because it’s a little higher than one, it’s actually going to
move a little higher or a little lower than the gains or drops in the S&P 500.So that is to say, if
the S&P 500 one day moved 1% , Apple tends to move by 1.09%, just a little higher.If the S&P
500 drops by 1%, Apple tends to drop by at 1.09%.And we can see there is a little bit of alpha
here.But in general, Apple is a high beta stock, essentially telling you that it moves very much in
line wih SP500.It makes sense because Apple actually comprises a very large portion of the S&P

13

500 at certain times, it could be up to five percent of the entire index because Apple is such a huge
company.

let’s check out for Amazon.

[39]: beta_and_alpha(amzn)

[39]: (1.026474799622411, 0.0006735393441121329)

10 COMMENT
Notice that Amazon very similar behavior to Apple.It moves in a little bit of a greater one beta
ratio.And it also has a little bit of small alpha.

What about GE?

[40]: beta_and_alpha(ge)

[40]: (1.1488219188566973, -0.00043588058002061946)

11 COMMENT
Well, here we can see that GE actually has a higher beta than both Apple and Amazon.Is this good
or bad? it really depends on what the market is over that time period.But this is essentially telling
you when the market moves up by 1%, GE tends to move up even higher than by 1.4% percent
or when the market moves down GE tends to move down even more than by 1.4%.However, the
big concern is a negative alpha.What is a negative alpha mean? We know alpha is going to
be the performance that is not correlated with the general market performance of daily returns.
Having a negative alpha means that even as the market moves up, GE is able to move down
so it’s able to actually not have performance or have poor performance, regardless of the actual
market conditions.You really don’t want to have investments with negative alpha.You would prefer
high alpha because that means you gain performance regardless of market conditions.But having
a negative alpha tends to mean that even if the market’s moving up, there’s still going to be
performance that is drawing GE down.

Now let’s check it out for VIX.

So if we run this for VIX, we get a negative beta and this is really interesting.This means that we
essentially have a negative correlation to the actual market.And that’s actually what VIX is more
or less designed to do.

[41]: beta_and_alpha(vix)

[41]: (-5.89940794981144, 0.006742981581293554)

12 COMMENT
That means as your S&P 500 moves up as that general market moves up, the VIX tends to move
in the exact opposite direction by around -6%.So essentially, if we had an SP500 gain of 1%, VIX

14

would move down by about around -6%.

13 WHAT DOES LEVERAGED ETFs MEAN?
It simply means lborrow money to try to increase returns.

[42]: sp_lev_ETF = pd.read_csv('sp_leveraged_2010.csv',
parse_dates=True,
index_col='Date')

[43]: sp_lev_ETF

[43]: Open High Low Close Adj Close \
Date
2009-12-31 9.787500 9.787500 9.552500 9.560000 9.009787
2010-01-04 9.715000 9.887500 9.715000 9.867500 9.299584
2010-01-05 9.867500 9.937500 9.780000 9.932500 9.360847
2010-01-06 9.910000 9.990000 9.892500 9.940000 9.367911
2010-01-07 9.907500 10.047500 9.850000 10.022500 9.445668
… … … … … …
2021-08-30 131.880005 133.119995 131.750000 132.619995 132.619995
2021-08-31 132.550003 132.779999 131.869995 132.309998 132.309998
2021-09-01 132.809998 133.139999 132.229996 132.380005 132.380005
2021-09-02 133.240005 133.669998 132.429993 133.169998 133.169998
2021-09-03 132.500000 133.419998 132.210007 133.119995 133.119995

Volume
Date
2009-12-31 33780400
2010-01-04 43924400
2010-01-05 38780400
2010-01-06 42499600
2010-01-07 45704800
… …
2021-08-30 1258900
2021-08-31 1763600
2021-09-01 1402900
2021-09-02 929800
2021-09-03 1260500

[2940 rows x 6 columns]

[44]: sp_lev_ETF = calc_cum_perc(sp_lev_ETF)

[45]: sp_lev_ETF

15

[45]: Open High Low Close Adj Close \
Date
2009-12-31 9.787500 9.787500 9.552500 9.560000 9.009787
2010-01-04 9.715000 9.887500 9.715000 9.867500 9.299584
2010-01-05 9.867500 9.937500 9.780000 9.932500 9.360847
2010-01-06 9.910000 9.990000 9.892500 9.940000 9.367911
2010-01-07 9.907500 10.047500 9.850000 10.022500 9.445668
… … … … … …
2021-08-30 131.880005 133.119995 131.750000 132.619995 132.619995
2021-08-31 132.550003 132.779999 131.869995 132.309998 132.309998
2021-09-01 132.809998 133.139999 132.229996 132.380005 132.380005
2021-09-02 133.240005 133.669998 132.429993 133.169998 133.169998
2021-09-03 132.500000 133.419998 132.210007 133.119995 133.119995

Volume Percent Change
Date
2009-12-31 33780400 0.000000
2010-01-04 43924400 3.216478
2010-01-05 38780400 3.896429
2010-01-06 42499600 3.974841
2010-01-07 45704800 4.837868
… … …
2021-08-30 1258900 1371.954897
2021-08-31 1763600 1368.514221
2021-09-01 1402900 1369.291235
2021-09-02 929800 1378.059404
2021-09-03 1260500 1377.504418

[2940 rows x 7 columns]

[46]: plt.figure(figsize=(10,3),dpi=200)
sp_lev_ETF['Percent Change'].plot(label='Lev Sp500')

[46]: <Axes: xlabel='Date'>

16

So just running this figure, we can see we have really large gains. Let’s go ahead and plot it against
SP500.

[47]: plt.figure(figsize=(10,3),dpi=200)
sp_lev_ETF['Percent Change'].plot(label='Lev Sp500')
sp500['Percent Change'].plot(label='Sp 500')
plt.legend()

[47]: <matplotlib.legend.Legend at 0x152a19d7190>

So we can see over that time period, it looks like the Lev ETF (Lev SP500) was moving a lot more
dramatically than SP500. To make it statically more meaningful, lets code it like below.

[48]: plt.figure(figsize=(10,3),dpi=200)
sp_lev_ETF['Percent Change']['2020':'2021'].plot(label='Lev Sp500')
sp500['Percent Change']['2020':'2021'].plot(label='Sp 500')
plt.legend()

[48]: <matplotlib.legend.Legend at 0x152a37d2410>

17

[49]: sp_lev_ETF['Daily Returns'] = sp_lev_ETF['Adj Close'].pct_change()

[50]: sp_lev_ETF = sp_lev_ETF.dropna()

And now it’s time to get beta and alpha beta and alpha of S&P Leveraged ETF.

[51]: beta_and_alpha(sp_lev_ETF)

[51]: (2.010135618299088, -7.749523800499192e-05)

14 COMMENT
So this ETF is doing its job.It’s giving you 2x exposure to the market’s beta.So when the market
goes up by, let’s say, 1%, this leveraged ETF is going to try to go up by 2% and when it goes down
by, let’s say, one percent, it’s going to end up going down by double 2%.And that scales with it.

18

	CAPM CAPITAL ASSET PRICING MODEL
	Load stock data
	Compute cumulative returns
	COMMENT
	COMMENT
	COMMENT
	COMMENT
	CAPM,BETA,ALPHA AND LINEAR REGRESSION
	COMMENT
	COMMENT
	COMMENT
	COMMENT
	WHAT DOES LEVERAGED ETFs MEAN?
	COMMENT

